Semi-structured Document Feature Extraction

Romuald Rousseau

2024-03-02

Abstract

The document discusses the challenges organizations face in dealing
with semi-structured documents, particularly spreadsheets, due to their
diverse formats and lack of standardization. It highlights the presence
of defects within spreadsheets, often unnoticed by end-users, which pose
difficulties for automated processes. The document proposes a method to
classify spreadsheet elements and create a structured format resembling
a JSON file to address these challenges.

1 Introduction

In the current data-driven environment, grappling with the intricacies of semi-
structured documents presents a notable hurdle for organizations. These docu-
ments, marked by varying formats and a lack of uniformity, frequently demand
specific expertise for efficient handling and analysis. Among these documents
are spreadsheets, which are ubiquitous across all organizations. Despite being
used extensively, they often harbor imperfections that are typically unnoticed
by end-users but pose obstacles for automated procedures. Moreover, while
containing tabular data, they may also include unstructured text around them.

Below an examples of spreadsheets with a mixed of tabular data, unstruc-
tured data and defects (Blank rows or columns put here for aesthetics or by
mistakes):

Figure 1: Spreadsheet Example

A document very important 2023-Feb-01
Product 1

Date Client Qty Amount
2023-Feb-01|AAA 1 100
2023-Feb-01|BBB 1 100
2023-Feb-01|BBB 3 300
2023-Feb-01|AAA 1 100
Total 600
Product 2

Date Client Qty Amount
2023-Feb-01|AAA 1 100
2023-Feb-01|BBB 2 200
2023-Feb-01|CCC 4 400
2023-Feb-01|(DDD 1 100
Total 200
Product 3

Date Client Qty Amount
2023-Feb-01|AAA 1 100
2023-Feb-01|CCC 1 100
2023-Feb-01|AAA 1 100
2023-Feb-01|DDD 1 100
Total 400

This document describes a method to classify the different elements of a
spreadsheet and build a structure similar to a JSON file.

2 Reading Direction

Cognitive research shows that Human reads a document using a certain direc-
tion; depending of the culture and language of the individual. The human eye
is so much trained that it is almost instinctive to look at the top left for any
English reader when a page is displayed on a computer. As such, when a hu-
man creates a document, he is influenced by this reading direction because he
supposes his future reader to look at the document in the same way he looks

at it.

It means the flow of the various elements of the document will follow the

reading direction and therefore can be linked to each other along this direction.

2.1

Definition of Reading Direction

A reading direction is defined by a tuple of a directions. Directions are defined
as follows:

Vertical direction when cells are vertically arranged. We can have respec-
tively 2 vertical directions top (T) to bottom (B) or bottom (B) to top
(T) that we notes respectively TB or BT.

Horizontal direction when cells are horizontally arranged. We can have
respectively 2 horizontal directions left (L) to right (R) or right (R) to left
(L) that we notes respectively LR or RL.

The first element of the tuple is the primary direction or line direction
and the second element is the secondary direction or character direction.

Few examples:

TB-LR defines the English direction of reading when we read lines from top
to bottom and characters from left to right. This direction is sometimes
called Gutenberg direction.

TB-RL defines the Arab direction of reading when we read lines from top
to bottom and characters from right to left

RL-TB defines the traditional Chinese direction of reading when we read
lines from right to left and characters top to bottom

3 Feature Extraction

A spreadsheet is composed of unstructured text and of tabular data. Tabular
data is a rectangle tightly grouped cells along rows and columns.
We propose the following steps to extract the free text and the tabular data:

3.1

Spreadsheet To Bitmap

Transform the spreadsheet by an bitmap:

def

Listing 1: Spreadsheet To Bitmap

spearsheet_to_bitmap (rows):
for row in rows:
for cell in row:
if cell.ispace():
yield 0
else:
yield 1

For example:

Figure 2: Spreadsheet To Bitmap

A document very important 2023-Feb-01 |]]
Product 1

Date Chent Qty Amount
2023-Feb-01[AAA 1 100
2023-Fab-01|BBB 1 100
2023-Feb-01|BBB 3 200
2023-Feb-01[AAA 1 100
Total 600
Product 2

Date Client Qty |[Amount
2023-Feb-01[Aaa 1 100
2023-Feb-01|BBB 2 200 ==
2023-Feb-01|CCC 4 400
2023-Feb-01[DDD 1 100
Total 800
Product 3

Date Client Qty lAmaunt
2023-Feb-01|AAA 1 100
2023-Feb-01/CCC 1 100
2023-Feb-01[AaA 1 100
2023-Feb-01|DDD 1 100
Total 400

3.2 Feature Extraction From Bitmap

From the bitmap, run a feature extraction such as Hough transformation or
Region of Interest or even better a package like OpenCV. In our Java imple-
mentation, we use a simple Hough transformation with a convolution (size=3x3,

stride=1) over the bitmap and a kernel (3x3) to detect rectangle corners.
For example:

Figure 3: Feature Extraction

A document very important 2023-Feb-01 |] T
Product 1

Date Chent Qty Amount
2023-Feb-01|AAA 1 100
2023-Fab-01|BBB 1 100
2023-Feb-01|BBB 3 200
2023-Feb-01|AAA 1 100
Total 600
Product 2

Date Client Qty Amount
2023-Feb-01|A8A 1 100
2023-Feb-01|BBB 2 200 ==
2023-Feb-01]cCC 4 400
2023-Feb-01|DDD 1 100
Total 800
Product 3

Date Client Qty lAmaunt
2023-Feb-01|AAA 1 100
2023-Feb-01/CCC 1 100
2023-Feb-01|AAA 1 100
2023-Feb-01|DDD 1 100
Total 400

3.3 Classify Features

Calculate the area of each rectangle and determine if the rectangle enclose un-
structured text (here after called META) or tabular data (here after called
TABLE). One easy method is given a threshold, if the area is smaller than this
threshold, the area contains a META else a TABLE:

Listing 2: Spreadsheet To Bitmap

def area(r):
return r.rows x r.cols

def classify (RECTANGLES, THRESHOLD):
for r in RECTANGLES:
if area(r) < THRESHOLD:
return "META”
else:
return "TABLE”

For example with a threshold of 1:

Figure 4: Classify Feature

A document very important 2023-Feb-01 META

Product 1

Date

client

Amount

2023-Feb-01

A

100

2023-Feb-01

BBE

100,

2023-Feb-01

BBE

300,

2023-Fab-01

AL

=

100

Total

600

Product 2

Date

Client

Amount

2023-Feb-01

ALA

100

2023-Fab-01

BBB

200,

2023-Feb-01

ccc

400

2023-Feb-01

Dbb

| ||

100

Total

800

Product 3

Date

Client

Aamount

2023-Feb-01

A”A

100

2023-Feb-01

cCcC

100

2023-Feb-01

AdS,

100,

2023-Feb-01

[3]]s])

=

100

Total

400

META

TABLE

META

TABLE

META

TABLE

3.4 Build Tree Structure

Depending of the reading direction, build a tree linking the META and TABLES
found above:

Listing 3: Tree Structure

Define reading direction for english
document start on the top, left
reading_direction_start_cell = { "row”: 0, ”"col”: 0 }

Child meta are strictly on the right and below a
current element
reading _direction_next_meta =

lambda x, y: x.row >= y.row and x.col > y.col

Child table are on the right and below a current
element

reading _direction_next_table =
lambda x, y: x.row >= y.row and x.col >= y.col

def reading_direction_findclosestfromstart ():

closest = None

min = 0

for meta in METAS:
dist = (meta.row —

reading_direction_start_cell .row)*%2
+ (meta.col —
reading_direction_start_cell.col)*%2
if closest is None or min < dist:
closest = meta
min = dist
return closest

def reading_direction_ischildof(root, elem, func):
closest = None
min = 0
for node in root:
if node != elem and func(elem, node):
dist = (node.row — 0)*%2 4+ (node.row — 0)%%2
if closest is None or min < dist:
closest = elem
min = dist
return closest

root = reading._direction_findclosestfromstart ()

METAS are processed first and serve as anchor
for the TABLES
for meta in METAS:
parent = reading_direction_ischildof (
root ,
meta,
reading _direction_next_meta

)

if parent is None:
root . append (meta)
else:

parent . append (meta)

TABLES are processed in second and possibliy
attached to METAS
for table in TABLES:
parent = reading_direction_ischildof (
root ,
table ,
reading _direction_next_table

)
if table is None:
root .append(table)
else:
parent .append (table)

For example:

Figure 5: Tree Structure

root

L A document very

important
3 2023-Feb-01
e al Product 1
\—l Table 1
= Product 2
\—b Table 2
| Product 3

\—) Table 3

4 From Tree Structure to JSON structure

The tree structure above can be easily converted into a JSON structure. Below
the final JSON structure of the spreadsheet:

Listing 4: JSON Structure

"meta”: ”"A document very important”
"meta”: 72023—Feb—01”

{
"meta”: ”Product 17,
7 table”:
[
{
"Date”: 72023—Feb—01"7,
7’ Client”: "AAA” | 7Qty”: 1,
” Amount”: 100
}
]
'
{
"meta”: ”Product 27,
”table”:
[
{
"Date”: 72023—Feb—01"7,
7 Client”: "AAA” | 7Qty”: 1,
”Amount”: 100
}
]
’
{
"meta”: ”Product 37,
7 table”:
[
"Date”: 72023—Feb—01",
7 Client”: "AAA” | 7Qty”: 1,
”Amount”: 100
}
]
}

5 From JSON structure to Tabular Output

As a complementary to this method, we give the pseudo Python code to trans-
form any JSON structure into Tabular Outputs:
Listing 5: JSON structure to Tabular Output

import csv
import json

def is_list_of_list (1):
return len(l) > 0 and all (]
isinstance (e, list)
for e in 1

1)

def flatten_list_of_list (1):
if all([is_list_of_list(e) for e in 1]):
return |
x for e in 1
for x in flatten_list_of_list (e)

]

else:
return |

def json_to_tabular_rec (o, column_prefix, rows, headers):
if isinstance (o, dict):
for k, v in o.items():

-, rows = json_to_-tabular_rec(
v,
column _prefix + 7.7 4+ k,
rows ,
headers

)

return headers, rows
elif isinstance(o, list):
return headers, flatten_list_of_list(
[
json_to_tabular_rec(
X7
column_prefix ,
roOws ,
headers
1]

for x in o

)

else:
headers.add(column _prefix)
if is_list_of_list (rows):
return headers, |
a + [(column_prefix, o)]
for a in rows

10

]
else:
return headers, rows + [(column_prefix, o)]

def json_to_-tabular(o):
return json_to_tabular_rec (o, "column”, [], set())

def tabular_to_csv (headers, rows, fp):

writer = csv.writer (
fp,
delimiter="; ",

quoting=csv . QUOTE MINIMAL
)
writer . writerow (list (headers))
for row in rows:
records = [””] x len(headers)
for cell in row:
index = list (headers).index(cell [0])
records [index] = cell [1]
writer.writerow (records)

with open(”exampled.json”, ”r”) as fpl:

with open(”exampled.csv”, 'w’, newline="") as fp2:

tabular_to_csv (
xjson_to_tabular (json.load (fpl)), fp2)

6 References

Han, S., Northoff, G. Reading direction and culture. Nat Rev Neurosci 9, 965
(2008). https://doi.org/10.1038/nrn2456-¢2

7 Implementation

Java - github

11

	Introduction
	Reading Direction
	Definition of Reading Direction

	Feature Extraction
	Spreadsheet To Bitmap
	Feature Extraction From Bitmap
	Classify Features
	Build Tree Structure

	From Tree Structure to JSON structure
	From JSON structure to Tabular Output
	References
	Implementation

