
Table Layout Regular Expression - Layex

Romuald Rousseau

2024-03-02

Abstract

In the modern landscape of data presentation, tables serve as a ubiq-
uitous tool for organizing and conveying information efficiently. Whether
in the structured presentation of scientific findings or the widespread use
of spreadsheets in corporate environments, tables play a pivotal role in
facilitating data interpretation. Consequently, the extraction of valuable
insights encapsulated within these tables becomes paramount in any data
pipeline process. This white paper introduces a novel mechanism designed
to streamline the extraction of data from tables, particularly those with
intricate layouts. Through the construction of a regular language cus-
tomized to tabular representation, it aims to enhance efficiency and ac-
curacy in data extraction processes, ultimately empowering organizations
to unlock the full potential of their tabular data assets.

1 Introduction

Tables serve as a fundamental tool for organizing and presenting information in a
structured and comprehensible manner. However, the diverse formats and com-
plexities inherent in tables often pose challenges in effectively extracting relevant
data. Recognizing the need for a streamlined solution, this white paper intro-
duces a mechanism designed to decipher the intricate structures of tables.By
offering an efficient method to characterize complex table layouts, this mecha-
nism enables the accurate detection and extraction of various components and
data points. This solution aims to address the inherent complexities associated
with table processing, ultimately enhancing data extraction capabilities for im-
proved decision-making and analysis. The following figure shows few examples
of table layouts:

1

Figure 1: Various table layouts

2 About other research

A lot of research is made to extract data from table using machine learning and
probabilistic approaches. While those approaches give very good result, they
often failed in the consistence of the results. Our approach is purely determin-
istic, therefore the data extraction is very consistent and predictable. To be
noted, that our approach can be used jointly with machine learning, and our
compact way to describe table layout can be used to quickly create training sets
and/or labels.

3 Data Used and Statistics

The following table shows the number of documents used to experiement and
the number od documents that this system since helped to ingest:

Languages Experiment Docs Prod Docs Prod Records
8 445 4,777 27,698,600

4 Anatomy of a table

By analyzing different layouts based on hundred of documents, a table can be
categorized in different basic components:

• Columns, Rows, Cells.

• Captions, Header, Footer, Body.

2

• Row Groups, Sub-headers, Sub-footers.

All these components are structurally linked to each others and form repeated
patterns. The basic relation between the components of a table follows the di-
rection of reading, left top right, top to bottom for most western languages.The
following figure shows a graphical overview of those components and their rela-
tion to each others:

Figure 2: Ananomy of a table

4.1 More formally

A table is basically a grid (rows and columns) of cells. Cell is the smallest
component of a table. A cell can contain a value, be empty or be merged with
its neighbors. If we look closely, a table can be represented as a stream of cells
ordered through the direction of reading and separated by end of row elements.
Below an example of a simple table represented as a stream of cells, where:

• $ is an end of row.

• [] is an empty content of a cell.

• [A-F] is a content of a header cell.

3

• [0-5] is a content of a row cell

Figure 3: Stream over a Table

5 Formally

5.1 Definition of a Table

The collection of table T over an alphabet Σ is defined recursively as follows:

• The empty table Ø is a table

• The end of row $, the singleton {$} is a table

• For each cell with a content c ∈ Σ, the singleton {c} is a table

• If A is a table, A* (Kleene star) is a table.

• If A and B are tables, then A ·B (concatenation) is a table

5.2 Definition of a Reading Direction

A reading direction is defined by a tuple of a directions. Directions are defined
as follows:

• Vertical direction when cells are vertically arranged. We can have respec-
tively 2 vertical directions top (T) to bottom (B) or bottom (B) to top
(T) that we notes respectively TB or BT.

• Horizontal direction when cells are horizontally arranged. We can have
respectively 2 horizontal directions left (L) to right (R) or right (R) to left
(L) that we notes respectively LR or RL.

• The first element of the tuple is the primary direction or line direction
and the second element is the secondary direction or character direction.

Few examples:

4

• TB-LR defines the English direction of reading when we read lines from top
to bottom and characters from left to right. This direction is sometimes
called Gutenberg direction.

• TB-RL defines the Arab direction of reading when we read lines from top
to bottom and characters from right to left

• RL-TB defines the traditional Chinese direction of reading when we read
lines from right to left and characters top to bottom

5.3 Definition of a Stream over a Table and a Reading
Direction

The collection of stream S over the table T and a reading direction R is defined
by the following transformations:

Table 1: Stream Transformation

Reading Direction Table Stream

TB-LR
A ·B

A · {$} ·B

TB-RL
B ·A

A · {$} ·B

BT-LR
A ·B

5

B · {$} ·A

BT-RL
B ·A

B · {$} ·A

TB-LR
A ·B

A · {$} ·B

TB-RL
B ·A

A · {$} ·B

BT-LR
A ·B

6

B · {$} ·A

BT-RL
B ·A

B · {$} ·A

5.4 Merged cells

Cells can be merged with their neighbors however we didn’t define this concept
in our formalism above. It is because, we can avoid merged cells by simply copy
the content of the cell vertically or horizontally. Formally and depending of the
reading direction:

• A cell merged of N cells in the character direction with the content c ∈ Σ
can be transformed as a concatenation {c}N

• A cell merged of N cells in the line direction with the content c ∈ Σ can
be transformed as a concatenation ({c} · {$})N

6 Regular Language of a Stream over a Table
and a Reading Direction

6.1 Regular Language formal definition

The collection of regular languages over an alphabet Σ is defined recursively as
follows:

• The empty language Ø is a regular language.

• For each a ∈ Σ(a belongs to Σ), the singleton language {a} is a regular
language.

• If A is a regular language, A* (Kleene star) is a regular language. Due to
this, the empty string language {ϵ} is also regular.

7

• If A and B are regular languages, then A∪B (union) and A ·B (concate-
nation) are regular languages.

• No other languages over Σ are regular.

6.2 Regular Language of a Stream over a Table and a
Reading Direction

Let define the alphabet Σ = {s, e, v} as follows:

• s, space, is an empty cell (containing spaces or nothing)

• e, entity, is a cell containing a string of characters matching a regex r ∈ R

– A number ([0-9]+)

– A date ([0-9]4-[0-9]2-[0-9]2)

– . . .

• v, value, is a cell containing a string that is not an entity or a space

By construction, a stream over a Table over the alphabet Σ and a Reading
Direction is a regular language.

6.3 Regular Expression

Regular Expression describes a regular language that can be recognized by a
finite automaton. A stream over a table and a reading direction is a regular
language and therefore can be describes by a regular expression. It means a
regular expression can match and extract patterns from a table after transfor-
mation into a stream over the given table and a given reading direction.

7 Table Layout Regular Expression or Layex

Table Layout Regular Expression or Layex is a syntax implementing a regular
expression describing the regular language of a stream over a table and a reading
direction. Layex syntax is similar to the commonly used regex syntax.

7.1 Boolean ”or”

A vertical bar separates alternatives. For example, gray—grey can match ”gray”
or ”grey”.

7.2 Grouping

Parentheses are used to define the scope and precedence of the operators (among
other uses). For example, gray—grey and gr(a—e)y are equivalent patterns
which both describe the set of ”gray” or ”grey”.

8

7.3 Quantification

A quantifier after an element (such as a token, character, or group) specifies
how many times the preceding element is allowed to repeat. The most common
quantifiers are the question mark ?, the asterisk * (derived from the Kleene
star), and the plus sign + (Kleene plus).

Table 2: Quantification Symbol

?
The question mark indicates zero or one occurrences of the pre-
ceding element. For example, colou?r matches both ”color” and
”colour”.

*
The asterisk indicates zero or more occurrences of the preced-
ing element. For example, ab*c matches ”ac”, ”abc”, ”abbc”,
”abbbc”, and so on.

+
The plus sign indicates one or more occurrences of the preceding
element. For example, ab+c matches ”abc”, ”abbc”, ”abbbc”,
and so on, but not ”ac”.

{n} The preceding item is matched exactly n times.
{min,} The preceding item is matched min or more times.
{,max} The preceding item is matched up to max times.

{min,max} The preceding item is matched at least min times, but not more
than max times.

7.4 Wildcard

The wildcard . matches any character. For example, a.b matches any string
that contains an ”a”, and then any character and then ”b”. a.*b matches any
string that contains an ”a”, and then the character ”b” at some later point.

7.5 Negation

The upper case of an element means all but this element; S means everything
except space.

8 General Algorithm

Below the outline of the algorithm in a pseudo Python language:

Listing 1: Layex Algorithm

import re

from openpyxl import load workbook

def match ent i ty (v , R) :

9

for r in R:
i f re . compile (r) . match (v) i s not None :

return True
return False

def c e l l t o a l p h a b e t (c e l l , R) :
i f c e l l . va lue . i s s p a c e () :

return ” s ”
e l i f match ent i ty (c e l l . value , R) :

return ”e”
else :

return ”v”

def t ab l e t o s t r e am (rows , R) :
for row in rows :
for c e l l in row :

i f c e l l . i smerged () :
for n in c e l l . merged hor i z range () :

y i e l d c e l l t o a l p h a b e t (c e l l , R)
else :
y i e l d c e l l t o a l p h a b e t (c e l l , R)

y i e l d ”$”

R = { r ’ [0−9] ’ }
reg = re . compile (r ’ v+$ ((e | s)+$)+ ’)

wb = load workbook (
f i l ename=’ example . x l sx ’ ,
r ead on ly=True

)
ws = wb . a c t i v e

Supposing re package works on i t e r a b l e
reg . match (t ab l e t o s t r e am (ws . rows , R))

Below the basic steps of the algorithm:

10

Figure 4: Layex Algorithm

9 Results and Statistics

The following tables give some statitics and the number of layex we wrote to
ingest all those documents. The ratio number of layex verses the quantity of
docs parsed demonstrates the flexibility and robusteness of this approach.

Avg Records per Docs Max Records per Docs Layex
5,798 1,048,575 15

10 Few examples

Layex are a very efficient way to describe complex table layout and therefore
detect them and extract the different components and data from them. Below
are few examples.

10.1 Simple table

The first example is a simple table with a header and few rows:

11

Figure 5: Simple Table

This simple table can be described with the layex:

(.+ $)((.+ $)∗)

Where,

• (.+ $) matches the header

– ((.+ $)∗) matches the body

∗ (.+ $)∗ matches the rows

· (.+ $) matches a row

10.2 Complex table

The first example is a complex table with a header, sub-header, sub-footer and
footer:

12

Figure 6: Complex Table

This simple table can be described with the layex:

(v$)(v + $)((v$)(.+ $) ∗ (v$)) ∗ (.+ $)(v$)

Where,

• (v$), matches the top caption

• (v + $) matches the header

• ((v$)(.+ $) ∗ (v$))∗ matches the body

– ((v$)(.+ $) ∗ (v$)) matches a row-group

∗ (v$) matches the sub-header

13

∗ (.+ $)∗ matches the rows

· (.+ $) matches a row

∗ (v$) matches the sub-footer

• (.+ $) matches the footer

• (v$) matches the bottom caption

11 References

• Regular Expression

• theory-of-computation-automata-tutorials

• TableExtraction-irj06.pdf

12 Implementation

Java - github

14

	Introduction
	About other research
	Data Used and Statistics
	Anatomy of a table
	More formally

	Formally
	Definition of a Table
	Definition of a Reading Direction
	Definition of a Stream over a Table and a Reading Direction
	Merged cells

	Regular Language of a Stream over a Table and a Reading Direction
	Regular Language formal definition
	Regular Language of a Stream over a Table and a Reading Direction
	Regular Expression

	Table Layout Regular Expression or Layex
	Boolean "or"
	Grouping
	Quantification
	Wildcard
	Negation

	General Algorithm
	Results and Statistics
	Few examples
	Simple table
	Complex table

	References
	Implementation

